Computational Analysis for Roughness-Based
Transition Control
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Abstract Suitably placed discrete roughness elements are known to delay or hasten
the onset of transition, depending on requirements. In this paper, 2D eigenvalue
analysis is used to study the effects of surface roughness in the context of transition
delay over subsonic and supersonic swept wing configurations, as well as boundary-
layer tripping on the forebody of a hypersonic air breathing vehicle.

1 Introduction

Surface roughness is known to have a substantial impact on the aerodynamic or
aerothermodynamic predictions for a flight vehicle, regardless of the state of the
boundary layer. When the incoming boundary-layer flow is laminar, the presence of
3D surface roughness tends to accelerate the laminar-turbulent transition process,
although carefully placed spanwise periodic discrete roughness elements can delay
the onset of transition in crossflow dominated boundary-layer flows. Passive control
via roughness elements provides an attractive avenue for drag reduction on subsonic
and supersonic swept wing configurations. On the other hand, in scramjet applica-
tions, artificial roughness is often employed for tripping the boundary layer flow on
the forebody of the vehicle to prevent engine unstart and to minimize the flow non-
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uniformities at the entrance to the combustor inlet.

This paper uses spatial, 2D eigenvalue analysis to explore the physics of rough-
ness effects on boundary layer transition across subsonic through hypersonic regimes
via a study of selected flow configurations.

2 Methods

The equations governing the unstable small-amplitude perturbations are obtained by
linearizing the Navier-Stokes equations about a specified basic state, such as a finite
amplitude crossflow vortex developing in a swept-airfoil boundary layer or longitu-
dinal streaks behind a spanwise-periodic array of boundary layer trips. For a basic
state that is slowly varying along one of the spatial coordinates (e.g. the crossflow
vortex axis), using a wave ansatz in that direction reduces the spatial dimension
of the problem governing the disturbance quantities by one, resulting in a set of
two-dimensional, linear partial differential equations at the leading order. The 2-D
eigenvalue problem in a spatial framework is solved to characterize the amplifica-
tion characteristics of high-frequency, secondary instabilities of crossflow vortices
as well as the instabilities of the stationary streaks trailing a periodic array of rough-
ness elements. The spatial stability equations are formulated in a non-orthogonal
coordinate system in order to properly account for the direction of spatial growth
and the spanwise periodicity of the unstable perturbations (see Li and Choudhari
2008).

3 Results

Computations are carried out to study the effects of surface roughness in the context
of three specific configurations, viz., (1) transition delay over a subsonic swept wing
at chord Reynolds number of Re, = 7 x 10° (Carpenter et al. 2008); (2) transition
control over a swept wing at Mach 2.4 and Re, = 16 x 10° (Saric and Reed 2002) and
(3) boundary layer tripping over a scaled model of the Hyper-X forebody at Mach
6 (Berry et al. 2001). For cases (1) and (2), the amplitude that is often referred
to below is that of the velocity component in the direction of the normal chord
as a fraction of the freestream velocity, and for case (3) it refers to the velocity
component in the direction of the freestream.

In case (1), the effect of periodically spaced roughness elements is simulated by
introducing stationary crossflow vortices with a spanwise wavelength of 2.25 mm
(the control mode) to suppress the growth of the linearly more unstable stationary
crossflow mode with a spanwise wavelength of 4.5 mm (the target mode). Compu-
tations based on nonlinear Parabolized Stability Equations (PSE) have shown that
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the amplitudes of the target mode can be significantly reduced via a control mode
with sufficiently large initial amplitudes. With the initial amplitude of the 4.5 mm
primary stationary crossflow vortex mode fixed at 10~ , the effect of increasing the
amplitude of the 2.25 mm control mode is shown in Figure 1 (a). With zero control
amplitude, it is seen that both of the dominant Y- and Z-mode secondary instabili-
ties undergo strong modal amplification. As the control amplitude increases, modal
amplification of both the dominant Y- and Z-modes is weakened. Furthermore, as
shown in Figure 1 (a), the presence of the control mode apparently affects the Z-
mode of secondary instability much more strongly than the Y-mode. This indicates
that, if indeed transition is caused by the growth of the Z-mode as some experiments
seem to suggest (Kawakami, M. et al. 1999, White and Saric 2005), the DRE is a
very effective means to achieve transition delay in the present case.

There is, however, a possibility that the 2.25 mm control mode could become sus-
ceptible to secondary instability and may itself break down to cause an earlier onset
of transition (i.e. overcontrol). Secondary instability analysis for the 2.25 mm con-
trol mode is carried out to assess the likelihood of this scenario. The peak N-factors
for Z-mode of secondary instability are less than 1 for all three control inputs. Of
the three initial amplitudes of 0.002, 0.005 and 0.01, only the last gives rise to a
maximum Y-mode secondary instability N-factor of approximately 11 at a chord-
wise location close to x/c = 0.25. For the other two amplitudes of control input, the
Y-mode N-factors remain less than or equal to approximately 8. Therefore, even if
the Y-mode can also lead to transition, the possibility of premature transition due to
overcontrol can be avoided by keeping the initial control mode amplitudes below a
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(a) Subsonic swept wing configuration.Envelops of secondary N-factor curves for Y- and Z-
familes. Nonlinear control of most unstable mode (4.5 mm) via control input (2.25 mm) with
different initial amplitudes.

(b) Mach 2.4 supersonic swept wing configuration. Crossflow vortex amplitude curves. Nonlinear
control of most unstable mode (3 mm) via control input (1.5 mm) with different amplitudes
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certain threshold, which in this case appears to be around 0.005 or slightly larger.

In case (2), similar analyses as those in case (1) are carried out for a swept wing
at a Mach number of 2.4. The wavelength of the control mode is 1.5 mm, and that
of the target mode is 3.0 mm. The rapid amplitude rise of the 3 mm target mode is
progressively delayed with increasing initial amplitude of the 1.5 mm control mode
(Fig. 1 (b)). Computations of secondary instability confirm the accompanying delay
in the amplification of the secondary instability modes on the 3 mm crossflow vor-
tex. More interestingly, however, the secondary instability analysis on the 1.5 mm
control mode reveals the increased likelihood of premature transiton via overcontrol,
since the N-factors of both the Y- and the Z-modes of secondary instability reach
relatively large values (with the Y-mode continuing to be the most dominant one).
For an initial control amplitude of 0.001, maximum N-factors for the two modes are
approxiamtely 8 and 6, respectively. When the amplitude is increased to 0.002, the
peak N-factors approach 13 and 9, respectively.

In case (3), the roughness array is employed to trigger an earlier transition in a
hypersonic boundary layer instead of delaying it. The computations described herein
model the Hyper-X Mach 6 flow configuration with three flat ramps to provide the
necessary compression ahead of the scramjet engine (see Berry ef al. 2001). The
trip elements produce strong trailing streaks (Fig. 2), which are susceptible to in-
stabilities similar to those riding on finite amplitude Gortler vortices over a concave
surface. The roughness array is placed on ramp 1 at 7.4 inches from the leading
edge, and the two corners joining the three ramps are at 12.4 and 17.7 inches, re-
spectively. The results presented herein correspond to a trip spacing of 6 = 0.081”
and a peak height of A = 0.060”. The mean flow is computed with a Navier-Stokes
solver, using the immersed boundary technique (see Ghosh et al. 2008).

Figure 2 shows that the streamwise streaks with strong spanwise boundary-layer
displacement in the wake of the trip array would persisit for long distances over the

Fig. 2 Steamwise streaks
produced behind the trip
array on Hyper-X model
(visualized via u-velocity
contours atx =6, 8”,107,12”
and 14", respectively, flow is
from bottom left to top right
and, for visual clarity, the
wall normal and spanwise
coordinates Y and Z have
been modified relative to X
coordinate). The underlying
light surface corresponds to
the isosurface of streamwise
velocity for u = 1m/s.




Computational Analysis for Roughness-Based Transition Control 5

forebody surface if the boundary-layer flow were to remain laminar.

Since the spanwise and wall-normal length scales of these streaks are compara-
ble with each other, the modified boundary-layer flow has a strongly inhomogencous
character in both Y and Z directions. Therefore, its stability characteristics are more
appropriately studied by solving a 2D eigenvalue problem. It is found that multiple
modes of instability co-exist, which is typical of boundary-layer flows modified by
finite amplitude streaks. The growth rates of the two dominant modes of instability
at x = 7.9” have been plotted against the disturbance frequency in Fig. 3(a), which
also indicates the representative mode shapes for the magnitude of the u-velocity
perturbation associated with each mode. The spanwise period of these modes is
equal to the array spacing 8. Despite the presence of strongly inflexional boundary-
layer profiles in the wall-normal direction, the more unstable mode (i.e., mode 1)
from abovementioned modes is found to be driven by the spanwise (Z) shear of the
basic state (i.e., corresponds to an odd mode, which induces sinuous motions of the
underlying stationary streaks). Since the spanwise shear occurs solely because of
the trip array, this dominant, odd (or Z) mode of streak instability would not have
existed without the roughness elements. The subdominant mode 2 is found to be an
even (¥) mode.

N-factors and growth rates of fixed frequency disturbances belonging to mode 1
family have been plotted in Figs. 3(b) and 3(c), respectively. As seen from Fig. 3(c),
the growth of streak instability ceases well upstream of the end of the model ramp 1
(x=12.4”) before resuming again over the second compression ramp. The absence of
growth in the immediate vicinity of the compression corner is attributed to the rapid
decrease in streak amplitudes just ahead of the corner. As seen from Fig. 3(b), the
odd mode (mode 1) disturbances near f= 90 kHz reach an N-factor of approximately
7 across an amplification region of just 2.5 inches. In a previous set of experiments
in the same facility (Horvath et al. 2002), transition onset on a smooth, flared cone
model had been found to correlate with N = 4. Thus, if a similar value of N is
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Fig. 3 For steamwise streaks produced behind the trip array on Hyper-X model.
(a) Growth rates and mode shapes of modes 1 and 2 at plane x = 7.9”.

(b) Mode 1 N-factors.

(c) Mode 1 growth rate.
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assumed to correlate with the onset of roughness-induced transition on the Hyper-X
model, then the predicted onset of transition will be within a distance of Ax/L =
0.05 behind the trip (where L=48” denotes the reference length of the vehicle at the
model scale). The phosphor thermography measurement in the experiment (Berry
et al. 2001) is also suggestive of transition onset at a short distance behind the trip
array.

4 Conclusions

By applying artificial roughness elements, transition can be either delayed or has-
tened, depending on the specific requirements. In the former case, carefully designed
roughness elements produce long streamwise structures that suppress the growth of
the more dangerous crossflow vortices and hence weaken the high frequency sec-
ondary instabilities that would otherwise cause transition to occur earlier. The 2D
eigenvalue analysis plays an important role in this analysis by delineating an optimal
range of control input magnitudes. In the case of tripping over compression surfaces,
roughness clements generate stationary streaks that amplify across the compression
corner and, furthermore, enhance the growth of nonstationary streak instabilities that
are expected to trigger an carlier onset of transition as observed in the experiments.
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